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Abstract: Additive manufacturing technologies entail a layer wise 

production paradigm that permits the collection of a large amount of 

information, both in-situ and in-line, during the manufacturing of 

parts. This information is in the form of, among others, sensor signals, 

images, and videos. Such information can be effectively used for quick 

detection of anomalies and in-line qualification of complex, highly 

customized shapes.  

This QSR Data Challenge Competition is the result of a joint project 

on open science run by Politecnico di Milano and Trumpf. It consists 

of signals from two photodiodes acquired during a Laser Powder Bed 

Fusion (L-PBF) process, in which anomalies were purposively 

introduced by designing overhanging areas within bulk specimens. 

The task of the QSR Data Challenge is to develop a Statistical Process 

Monitoring procedure that is able to detect melting anomalies as soon 

as possible. Guidelines for using the data and method development are 

provided. The efficacy of a proposed method will be gauged based on 

the time to detect the anomaly as a function of the severity of the 

anomaly itself, and the number of false alarms. 
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1. Problem 

Additive Manufacturing (AM) processes and technologies have experienced continuous growth in their 

adoption across a wide variety of industrial sectors. They have impacted, among other domains, the biomedical, 

aerospace, racing and automotive, oil and gas, tooling and molding, and creative industries. From a statistical 

process monitoring (SPM) perspective, the AM paradigm entails a layerwise production that enables the in-

line and in-situ collection of a vast amount of signal data. These data can be used to determine process stability 

and to accelerate the detection of anomalies and defects during the manufacturing process. 



The 2021 QSR Data Challenge Competition corresponds to an open data science project run by Politecnico di 

Milano (www.polimi.it ) and Trumpf (www.trumpf.com). This project focuses on in-situ anomaly detection in 

Laser Powder Bed Fusion (L-PBF), which is a metal AM process in which a laser beam selectively melts thin 

layers of metal powder1. Among the diverse array of sensing configurations that are available for this process, 

a very effective and largely studied configuration consists of using the optical path of the laser to measure the 

radiation emitted by the melt pool and its surroundings (Fig. 1). The melt pool is the region where the laser 

beam exposure melts the material, and it is known to be a primary feature of interest in any process that 

involves a beam-material interaction aimed at achieving a local melting of the material.  

The dataset in this competition includes signals acquired via one spatially-integrated sensor (an indium gallium 

arsenide (InGaAs) photodiode) mounted co-axially to the laser path that measures the integral radiation within 

a field of view centered in the melt pool in the near/short infrared range. The photodiode signal was acquired 

during the manufacturing of one AlSi10Mg (aluminium) specimen produced with fixed process parameters 

(specifically, a scan speed of 1500 mm/s, laser power of 4800 W, and laser spot diameter of 100 µm). The 

specimen was manufactured using a multi-laser L-PBF Trumpf system. 

Within the specimen, anomalies were purposely introduced in specified layers by designing some unexposed 

blocks, i.e., inner regions of the specimen in which no laser scan occurred for a number of consecutive layers 

(ranging between 1 and 10). The first layer after an unexposed block has a large overhanging area with loose 

powder underneath. The heat exchange in this overhanging layer (and possibly in few of the layers that follow 

it) is altered by the fact that the loose powder has much less conductivity than the bulk material. Therefore, 

unexposed blocks tend to force heat conduction anomalies with increasing severity as the number of unexposed 

layers increases.  

The objective of the QSR Data Challenge is to develop an SPM procedure that can detect such anomalies 

as soon as possible while achieving the best compromise in terms of false positives and false negatives. 

 

 

Fig. 1 –Left: The co-axial monitoring setup that utilizes two photodiodes aligned to the optical path of the laser. Only 

the InGaAs photodiode is considered for this challenge. Right: Schematic side and top views of the melt pool along the 

laser scan direction.  

 

 

 

 
1 An illustrative video of the L-PBF process can be viewed at https://www.youtube.com/watch?v=HaWEw2sH4Kk   

http://www.polimi.it/
http://www.trumpf.com/
https://www.youtube.com/watch?v=HaWEw2sH4Kk


2. Data 

The specimen is a parallelepiped of size 10 ×  10 ×  25 mm. It was built vertically (i.e., the z direction is the 

build direction) in the L-PBF process (Fig. 2). In the bottom layers, corresponding to the tapered base area, the 

process was still not in its regime conditions, and so data collected during the production of such bottom layers 

are not included in the dataset. The number of unexposed layers within each unexposed block increased from 

1 to 10 along the z direction.  

The dataset is in HDF5 format, with one file per layer. For each layer, a data matrix is provided in which each 

row corresponds to one photodiode measurement and different columns correspond to the different variables 

described in Table 1. 

The photodiode signal was initially acquired with a sampling rate of 100 kHz and then down-sampled in order 

to have one datapoint every 30 µm along the laser scan path. The orientation of the laser scan direction and the 

laser scan path were changed every layer, as is commonly done in L-PBF. The dataset includes the X and Y 

coordinates of the laser spot (i.e., the coordinates of the center of the photodiodes’ field of view) recorded 

synchronously to the photodiode signals. 

 

 

Fig. 2 – Schematic view of the additively manufactured specimens with unexposed blocks, which are purposely used to 

force heat exchange anomalies in overhanging layers.  

 

Table 1 – Contents of the data associated with each layer. 

Column of Data 

Matrix 

Label Description 

1 X Coordinate X of laser spot (in mm) 

2 Y Coordinate Y of laser spot (in mm) 

3 NominalPower Nominal power (in W) 

4 NominalSpeed Nominal scan speed (in mm/s) 

5 NominalSpotDiameter Nominal laser spot diameter (in µm) 

6 LaserPowerCurrent Measured laser power (in W) 

7 SignalInGaAs Photodiode signal (arbitrary unit, proxy of temperature) 



8 IDbulkLayer Indicator variable that identifies bulk layers (value = 1) and layers 

that belong to unexposed blocks (value = 0). Signals acquired 

during the production of bulk layers are assumed to be in-control. 

9 IDoocLayer Identifier of the layers affected by the anomaly (first overhang 

layer following an unexposed block and two following layers), 

with values consisting of the integers from 0 to 9. 

10 c_1_cost Cost for late detection (see Table 2). c_1_cost = 0 for all layers 

where no anomaly is present, i.e., bulk layers and unexposed layers 

11 c_2_cost Cost for false alarms (see Section 3). c_2_cost = 20 for all bulk 

layers (i.e., layers to be used for false alarm rate estimation), 

c_2_cost = 0 for all remaining layers. 

 

The right panel of Fig. 3 provides a schematic representation of the link between the recorded laser spot 

locations (X and Y variables) and the corresponding photodiode measurement (SignalInGaAs variables). The 

left panel of Fig. 3 shows how anomalous layers are labeled in the IDoocLayer variable.  

 

 

Fig. 3 – Left: Illustration of the labelling of the anomalous layers. The three layers following the first unexposed block 

that consists of only one layer are labelled as 0. This is because, similar to bulk (in-control) layers, no anomalies were 

observed in the three layers labelled as 0. Right: The link between laser spot locations (X and Y variables) and the 

photodiode measurements.  

 

 

 

 



3. Evaluation and Expected Output 

The task in the 2021 QSR Data Challenge Competition is to develop an SPM methodology that can detect the 

out-of-control states as soon as possible in the three layers following an unexposed layer while avoiding false 

alarms (i.e., alarms issued when the laser is scanning bulk in-control layers). A cost objective function is 

specified that considers the trade-off between the time to detect an out-of-control state (defined in terms of the 

number of points scanned in the out-of-control layers before the detection) and the number of false alarms that 

cause a cost due to diagnostic actions. 

The SPM methodology shall be designed with a nominal false-alarm probability (Type I error) equal to 0.1%. 

Moreover, a set of in-control data for the SPM design phase (Phase I) can be considered available. These data 

consist of signals acquired in the first 𝑚 = 25 layers of each specimen. Specimens produced with the same 

laser scanner can be assumed as replicates.  

The SPM performance will be evaluated by means of an objective function that takes into account the cost for 

late detection of the anomaly and the cost for false alarms.  

The cost associated to late or missed detection of an anomaly, labeled by 𝑐1,𝑘  (𝑘 = 1 … . ,9), is based on the 

severity of porosity observed on the final specimen using X-ray Computed Tomography (CT). This cost ranges 

between 0 for no anomaly to 100 for high severity (Table 2). The greater defect severity, the greater the cost 

for late detection. All bulk layers not affected by anomalies have a cost 𝑐1,𝑘 = 0, as they are assumed to be in-

control. 

The cost associated to each false alarm is 𝑐2 = 20. This is based on the diagnostic procedure and the operator’s 

time that is spent on looking for an assignable cause.  

The objective function to be minimized is  

TOTAL COST = ∑ 𝑐1,𝑘𝑇𝑘 + 𝑐2𝐹𝐴9
𝑘=1  

where 𝑇𝑘 is the time (in terms of the number of measurement points) taken to signal the anomaly in the kth 

anomaly (i.e., in the kth group of three consecutive layers after an unexposed block), and 𝐹𝐴 is the total number 

of false alarms in bulk layers. 

 

Table 2 – Cost for late or missed detection of each anomaly. 

Anomaly ID (IDoocLayer) Cost for late detection 

1 10 

2 20 

3 40 

4 80 

5 100 

6 100 

7 100 

8 100 

9 100 

 

The expected output shall consist of the following results. 



• Time to signal for each anomaly. This will be counted as the number of measurement points that have 

been scanned since the start of the overmelting layer, i.e., the first overhang layer produced after one 

block of unexposed layers. If the anomaly is not detected, the time to signal shall be defined as the 

total number of measured points in the three layers affected by the anomaly (i.e., the three layers after 

the unexposed block). 

• Number of false alarms: an alarm is considered to be false if it is issued in any bulk layer out of the 

first three layers after each unexposed block. False alarms are counted at the individual measured point 

level. 

• Objective function value, defined as in the equation above. 

• ID of locations (X’s and Y’s) and layers where the anomaly has been detected. 

 

The best solution will be the one that minimizes the TOTAL COST. 

 

4. Download link 

The dataset can be downloaded at the following link: https://www.ic.polimi.it/open-challenge-QSR/ 

 

5. Submission 

The link to the website where you can upload your code and your results will be provided at a later stage, 

together with specific instructions on how to format your submitted output.  

You are encouraged to use open source codes.  
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